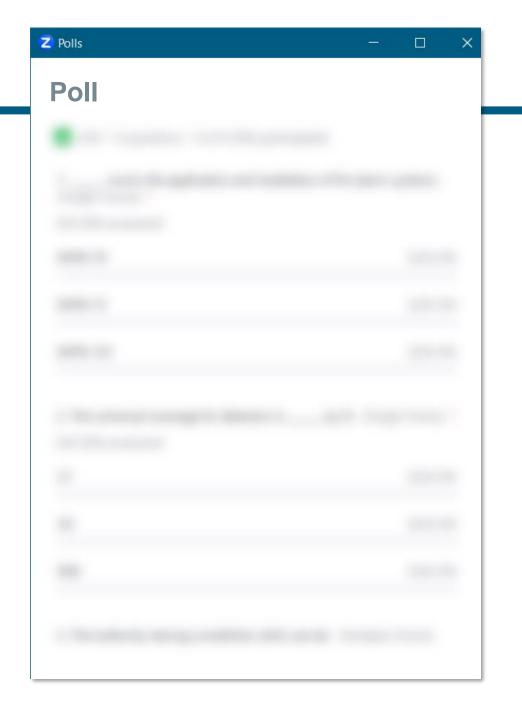


SIGNATURE MAPPING PRINCIPLES

- Click Q&A
- Type your question into dialogue box and press Enter
- You will receive a typed response, or the question will be answered live
- A transcript is posted with the webinar recording

Leave the meeting


	P	₽		Leave
Audio Settings 🔨	Chat	Raise Hand	Q&A	

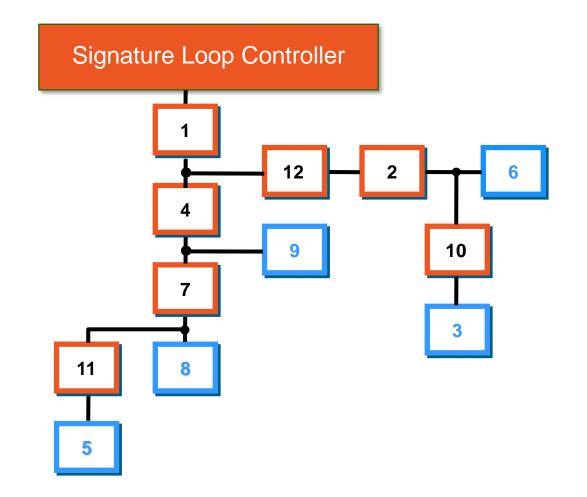
• Click Leave to exit the meeting

Poll Questions

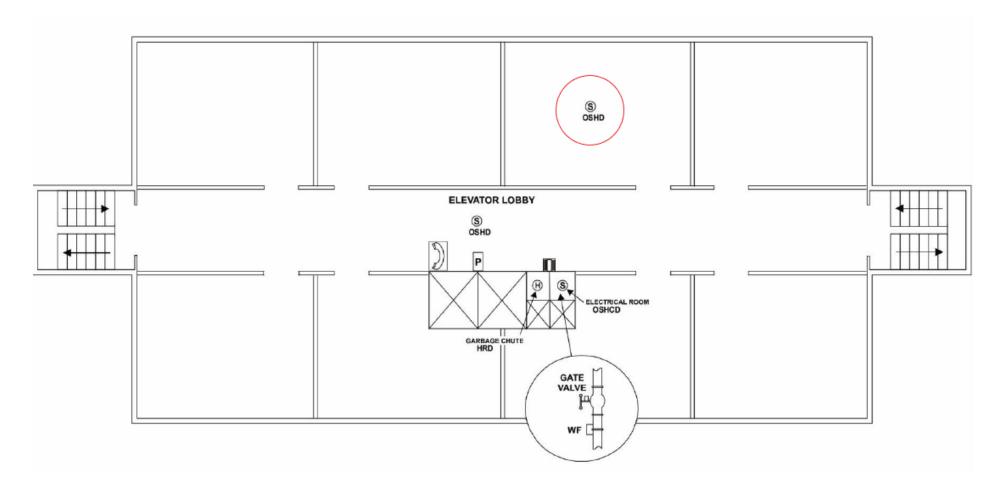
Let's take a minute to answer three poll questions

Discussion Topics

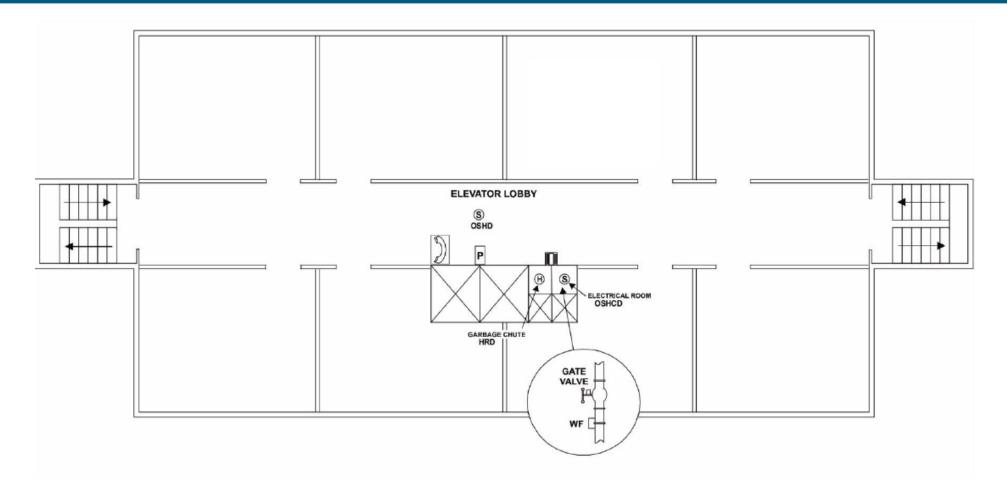
- What is a Signature Map used for?
- What are the five processes of mapping?
- How is a Signature Map created?
- How does the Loop Controller identify new devices or wiring?
- How are the field devices reconciled with our database?
- What causes a map fault?
- How to troubleshoot a map fault?


USING A SIGNATURE MAP

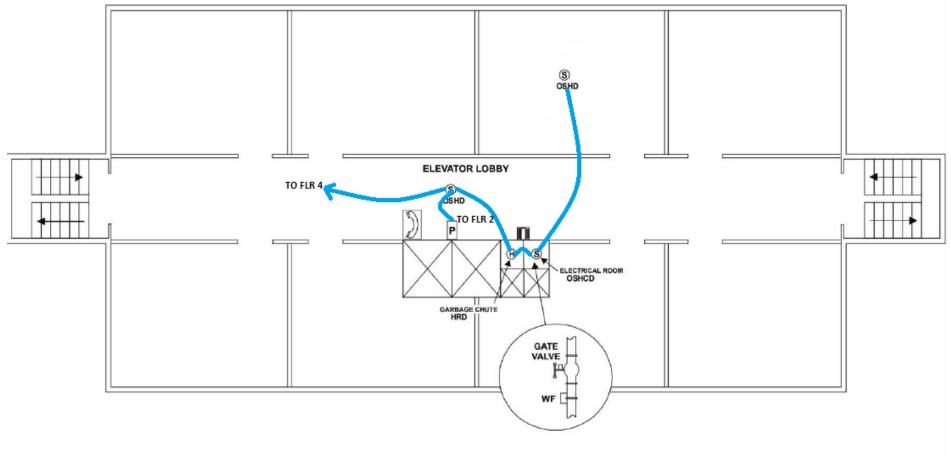
Uses of a Signature Map


Two key uses of a signature map

- 1. Troubleshooting a missing device
- 2. Replacing a dirty or bad device without the use of programming software.

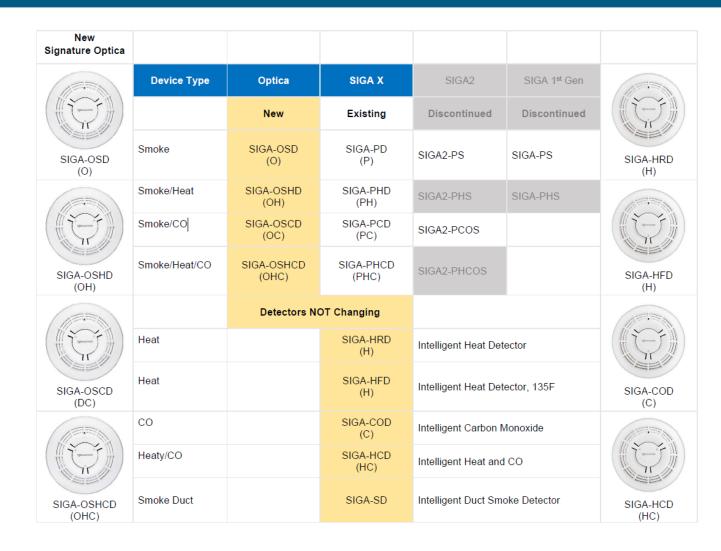

Troubleshooting with the Map

Comm fault: Floor 3 Office Smoke


Troubleshooting with the Map

Comm fault: Floor 3 Office Smoke

Troubleshooting with the Map



Comm fault: Floor 3 Office Smoke

Replacing Devices of the Same Model

- When replacing devices with the same model, the programming software is not required.
- The loop controller will identify the new device, remap the circuit, and apply all the previous settings to the new device.

THE FIVE MAPPING PROCESSES

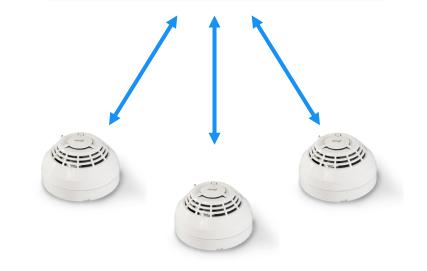
The Five Processes of Mapping

🧭 Signature Series Status / Diagnos	stics		40	×
Connection Type: • RS-232	C TCP/IP Download M	Node: C Single Step 📀 Network		
Communication Port: Com4 💌	Baud Rate: 38400 -			
	Loop Controller MACNEILL_SLC	Delay ▼ 3 全 sec.		
(1) Serial Numbers Foun (2) Communicating (3) Mapping (4) Checking EOL (5) Programming Loc	d 0 0 0 0 0 0 0 0 0 0 0 0	js Mapping Errors Device Chains Device Troubles 1	Irouble Tables Message Counters	

The Five Processes of Mapping

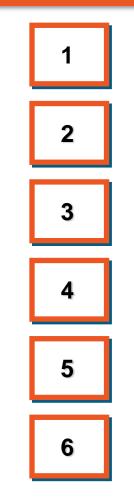
- 1. Serial numbers found: Creating database containing the s/n of each device on the loop
- 2. Communicating: Assigning unique short address (organizing devices in order of s/n)
- **3. Mapping**: Creating as-built wiring diagram (devices annunciate and listen)
- 4. Checking EOL: Creating Signature Paths (Series and Branch Connections)
- 5. **Programming**: Device settings applied (personality, device type, base type, etc.)

*Each step must complete before the next can begin.


*When mapping is disabled steps 3 and 4 are skipped.

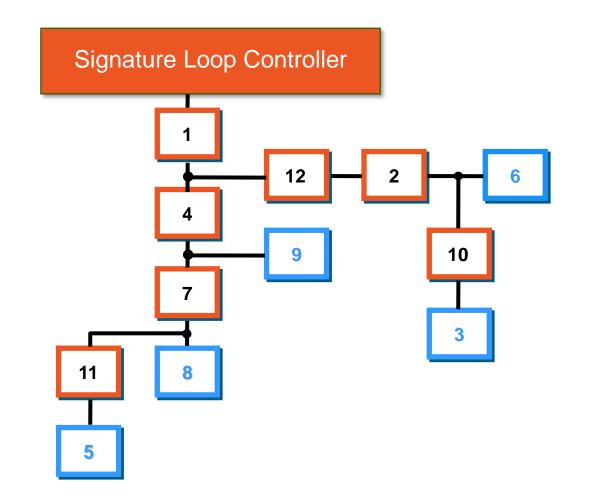
How is the Map Created?

- The Signature Loop Controller asks for the highest serial numbered device in a New Start condition
- All Signature devices are shipped with a New Start Bit Set
- The Loop Controller communicates with each device until the device in a New Start condition with the highest serial number is determined

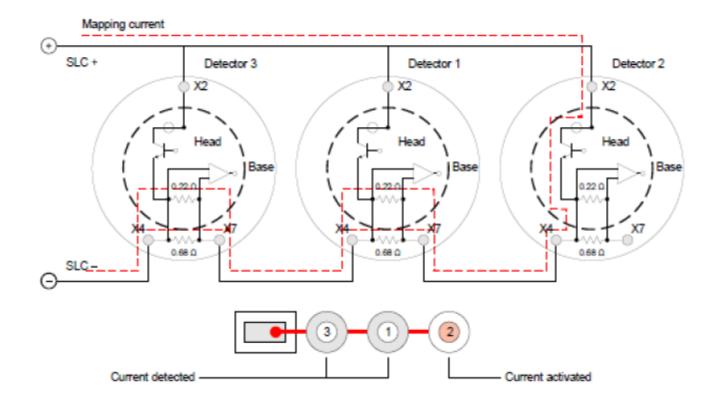

Signature Loop Controller

- When the device with the highest serial number is identified, the Loop Controller resets its New Start Bit and assigns the device a short address
- The Loop Controller repeats this process for the next highest serial numbered device in a New Start Condition
- The Loop Controller continues this process until there are no devices in a New Start condition
- The Loop Controller has identified all devices in its circuit

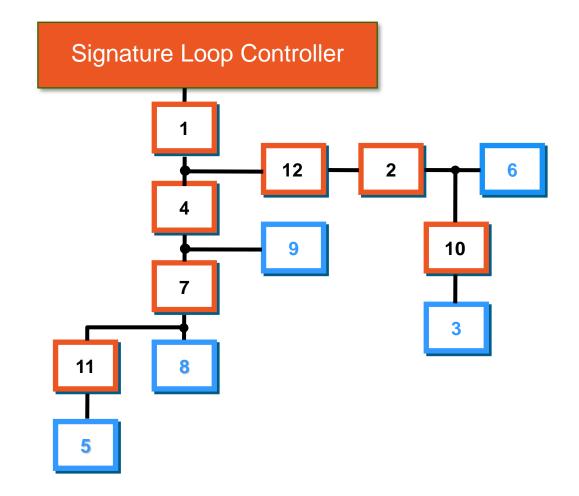
Signature Loop Controller


- A Path List is a list of all the devices located along the shortest electrical path between a selected device and the Loop Controller
- The Signature Series mapping command is a broadcast command sent to all devices. It instructs a single, specific device to draw current (annunciate) while all other devices in the SLC measure the current drawn (listen).

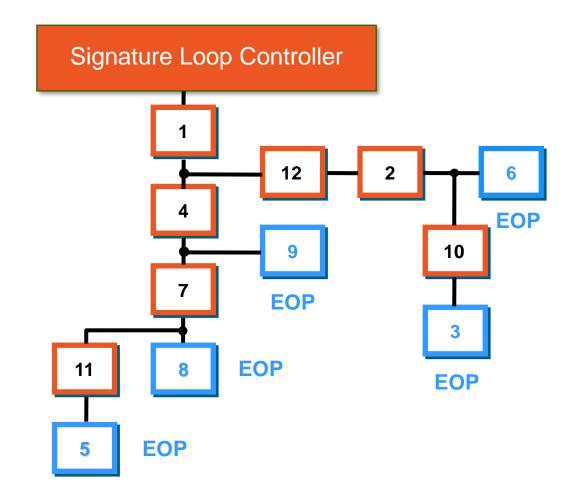
Signature Loop Controller



- The Loop Controller performs this task by making each device, in turn, draw current (annunciate)
- When a voltage drop is sensed at the (listening) device's mapping resistor, it responds to the Loop Controller in the electrical path
- With a completed Path List, the Loop Controller begins to see the relative locations of each device on the Loop

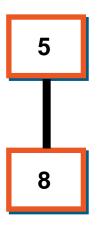

Mapping detector 2

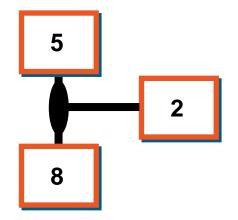
Mapping Exercise


• Live demo

Signature Path List

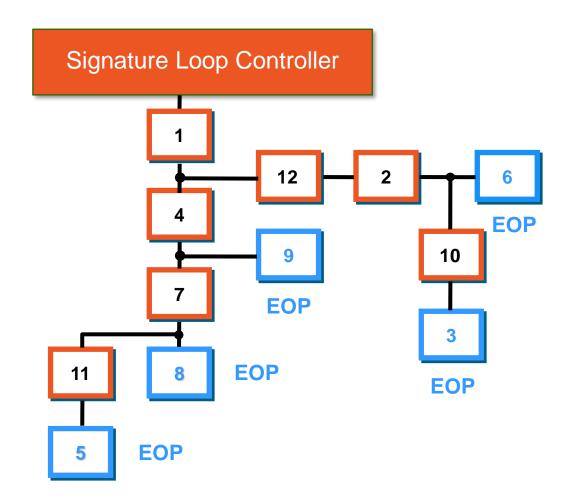
- The Loop Controller identifies the End-of-Path (EOP) Devices
- An EOP device is the last device on a branch
- Devices farthest from the Loop Controller on any given electrical path




Signature Path List

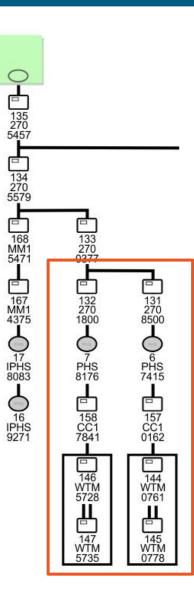
A Signature Path List is a list of the series and branch connections along the shortest electrical path between each EOP device and the Loop Controller

A series connection is a single, untapped wire between two devices


A branch connection is a simple T-tapped wire between three devices

Signature Path List

- With the Signature List complete, the mapping procedure is done
- Each EOP Signature must be unique
- A Signature List begins at the EOP device and ends at the Loop Controller
- The Signature for Device 9 is branch, branch, series

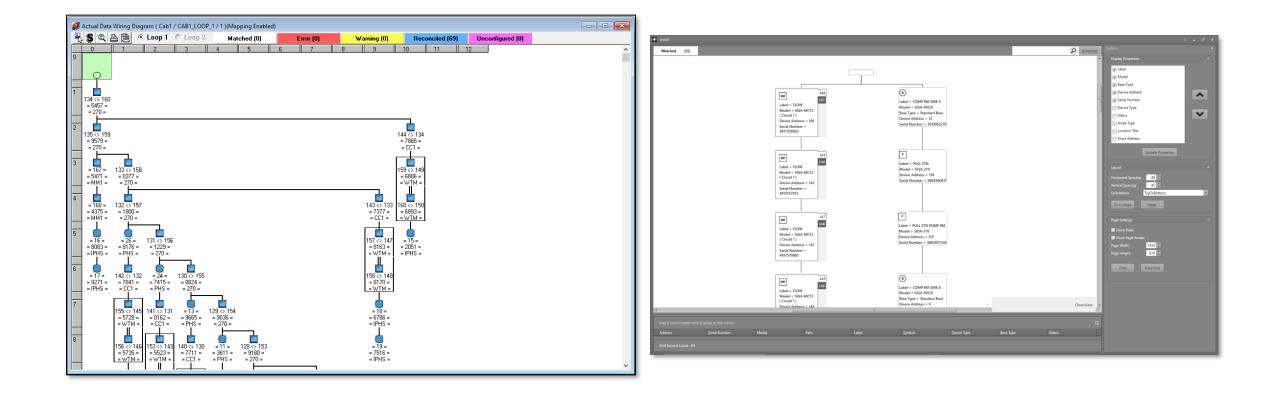

Knowledge Check

- Q: What is the term used when we have identical signatures?
- A: A balanced map
- Q: Are you permitted to have a balanced map?
- A: Yes, but it is not recommended

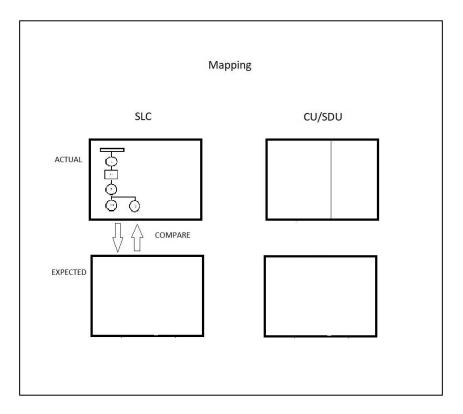
Balanced Map

T-Tap with 2 identical signatures

Unbalance the map


- Unbalance the map by moving the T-tap or adding a device to one of the balanced legs
- If you simply assign addressing or reverse the device inputs and outputs you may achieve a green panel, but:
 - The system may not perform to manufacturer's specifications
 - And the loop may not reprogram the new device
- A Star Tap is NEVER allowed

RECONCILING THE MAP



Reconciling Field Devices with Database

Database Reconcile Process

MAP FAULT CAUSES AND TROUBLESHOOTING

What is a Map Fault?

- Map fault /map/ fôlt/ noun
 - 1. A difference between the actual and expected map.

Q	map fault defir	hition		\times	Ļ	:
Q	map error def	inition				
Q	map definition	error hoi4				
Q	san andreas f	ault map definition				
Q	what is map f	ailure				
Q	what does ris	es mean on a map				
Q	what does ha	zard mean on map	s			
Q	what is code	map ping				
Q	map fault line	5				
Q	map of faults					
Q	define fault ge	eography				
		Google Search	I'm Feeling Lucky			
			Rep	ort inappropri	ate predi	ictions

Possible Causes of Map Faults

- Loose wire connections on detector bases, module terminals, at the SLC card, or at a Ttap.
- 2. Over-tightening a detector base onto the back box, causing it to warp, resulting in bad or intermittent connections with the detector head.
- 3. Replacing like devices in a SLC that has been left balanced.
- 4. Replacing devices with models that differ from the ones removed.
- 5. Adding new devices onto an existing SLC.
- 6. Rewiring an existing SLC.

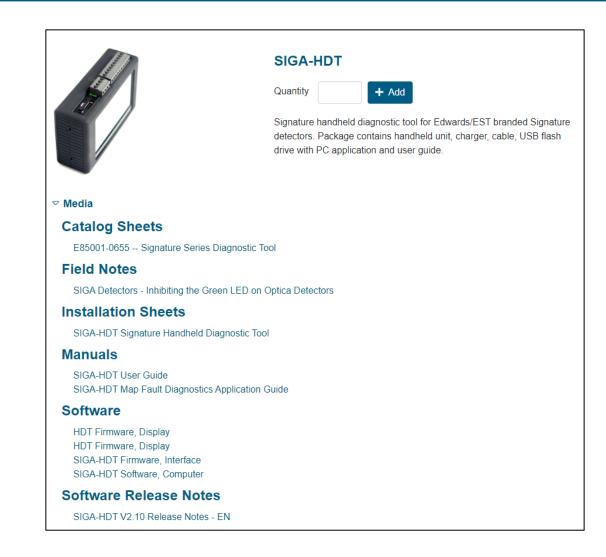
- 7. Defective devices.
- 8. More T-Taps in the SLC than the maximum allowed for the system. (124 per loop)
- 9. Resistance or capacitance in the field wiring more than that supported by the system.
- 10. Reversed polarity. Connecting the SLC+ wire to the device SLC- terminal.

Troubleshooting Map Faults with SIGA-HDT

- Handheld standalone diagnostic tool used to:
 - Locate and resolve Signature Map issues
 - Initialize a Signature loop before connecting to a control panel
 - Troubleshoot an existing loop
- Signature Diagnostic Tool Software (P/N 7350894) runs on Windows 7 and 10 Operating systems

Signature Diagnostic Tool

- Initialize or restore loop
- Perform Map Analysis on detectors and modules
- Perform Dirty Level analysis
- Program new device addresses
- Perform maintenance on a single device
- Reinitialize device addresses to zeros
- Diagnose single device
- Perform Loop history



Signature Troubleshooting

- Devices failing contact analysis or map consistency are possible causes for map fault or map mismatch
- Reversed IN/OUT wiring
- Loops within loops
- Short circuit in the SLC
- False EOL devices or T-taps
- Ground fault detection (must have Isolators and HDT must have same ground ref.)

myeddie.edwardsfiresafety.com

Siga-HDT Software

🞇 Signature Diagnostic Tool	– 🗆 X
File Control Tools Options Help	
C Loop	
📜 Initialize 📲 Read all EEPROM 🐩 Map 🕺 Dirty Deter	tion 🛞 Map Fault Analysis 📕 STOP
Not Connected	Battery 0%

Siga-HDT Logs

File Edit Format View Help	— — ×
Initialize EST3/3X Loop	
Found 45 total devices: 26 detectors, 19 modules	
Ground Fault Detection	
No Ground Fault detected at SIGA-HDT	
Trouble Detectors: 0 Trouble Modules: 0 Total Count: 0	
N . 17 I	
No trouble detected	
Detector Count:,26 , Module Count:,19 , Total Count:,45	
Collecting Device Information	
Devices Found:	
	(0)
[S001] D00001 "3896914789" SIGA v1.0.09 HRD (Manufactured: 03/12/201 [S002] D00002 "3896914376" SIGA v1.0.09 HRD (Manufactured: 03/12/201	
[S003] D00003 "3492709574" SIGA v1.0.08 PHD (Manufactured: 05/12/201	
[S004] D00004 "3492708843" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S005] D00005 "3492708768" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S006] D00006 "3492708621" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S007] D00007 "3492708492" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S008] D00008 "3492708362" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S009] D00009 "3492707211" SIGA v1.0.08 PHD (Manufactured: 08/17/201	
[S010] D00010 "3010013947" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	
[S011] D00011 "3010013862" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	7)
[S012] D00012 "3010013848" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	.7)
[S013] D00013 "3010013664" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	.7)
[S014] D00014 "3010013657" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	.7)
[3014] D00014 3010013037 310A VI.0.09 FIED (Manufactured: 02/23/201	
[S016] D00016 "3010013589" SIGA v1.0.09 PHCD (Manufactured: 02/23/201	

MAPPING BEST PRACTICES

Best Practices and Live Examples

- Striping wires
- Terminating a detector
- False T-Taps

Thank you!

- This concludes our webinar
- Anyone interested in staying on for our open Q&A session is welcome

