

Victor McGrew

BASIC IP NETWORKING

This Webinar is being recorded for distribution. Your participation serves as consent.

Objectives

- Discuss basic TCP/IP addressing
- Define subnet mask
- Explain components of a network
- Differentiate between network types
- Explain network wiring
- Differentiate between networking protocols
- Explain network security
- Describe network troubleshooting procedures

1	

Cloud-based Software as a Service (SaaS) provides a secure, remote connection to EST4

Provides a comprehensive view of entire portfolio of connected sites

Real-time information and advanced analytics regarding system status

Recommendations to improve performance and maintain system compliance

ConnectedSafety+

ESTMobile

1	

Cloud-based Software as a Service (SaaS) provides a secure, remote connection to iO panels

Provides insight and foresight to improve responsiveness and predict service needs

Access reports and on-board diagnostics from browser, smartphone or tablet

Sends real-time notifications and emails regarding alarms and other supervisory or fault events

KESMobile

Live System Monitoring

Real-time Reports

Streamlined Troubleshooting

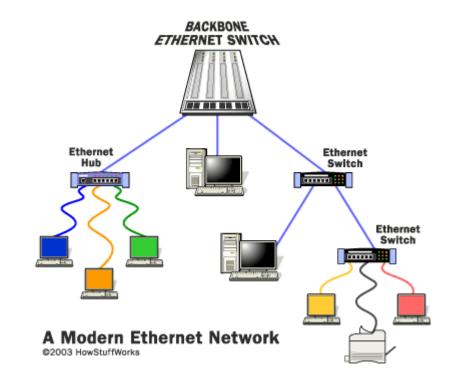
Complete Event History

NETWORKING

What is a network?

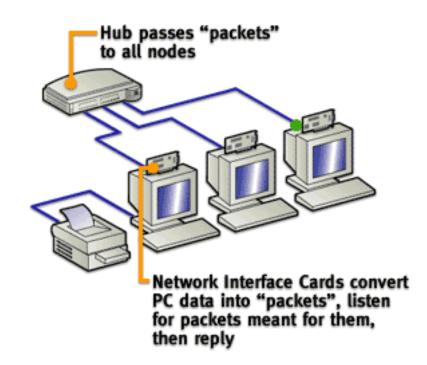
A network links similar items together using a set of rules that ensures reliable service

The Internet...


- A network of networks
- Series of private computers connected in an organization
- Each organization takes care of computers in its "sphere of influence"

Ethernet

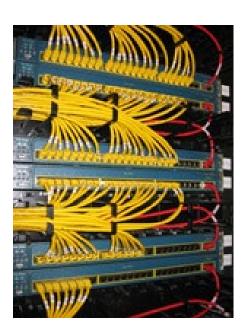
- Ether denotes that networks are not restricted for use on only one connection type
- Ethernet can be used on many systems and function the same way
- UTP, coax, fiber optic cables, and wireless technologies can be used


NETWORK DEVICES

Why use a hub?

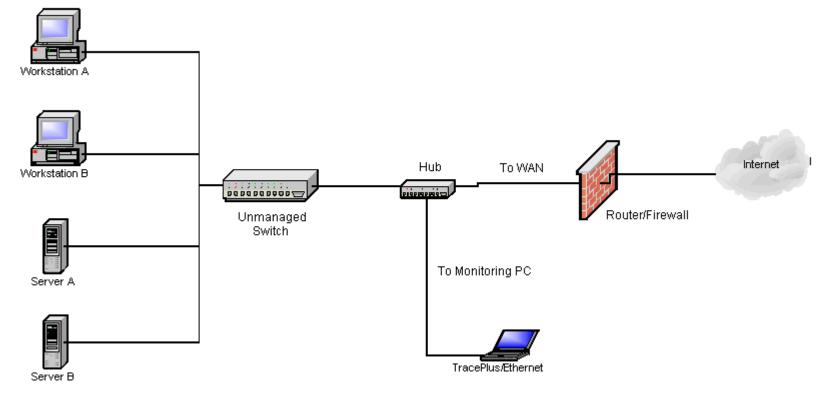
- PCs on a network communicate through a network interface card (NIC)
- With a hub, all PCs communicate with each other through a central location, where all the PC cables come together

Problem? All data is passed to all nodes Solution: Hubs are obsolete Use a network switch

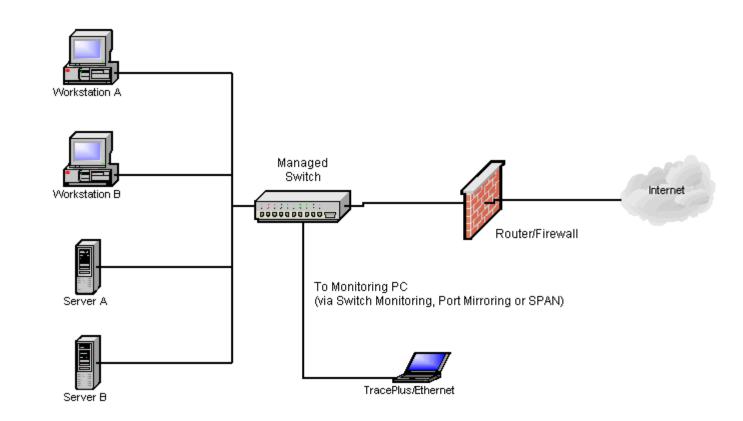


Switches

- Smarter version of a hub
- Associates each port with physical address of NIC connected to port
- Switch sends data only from NIC sending directly to NIC receiving
- Reduces transmissions and improves performance of network



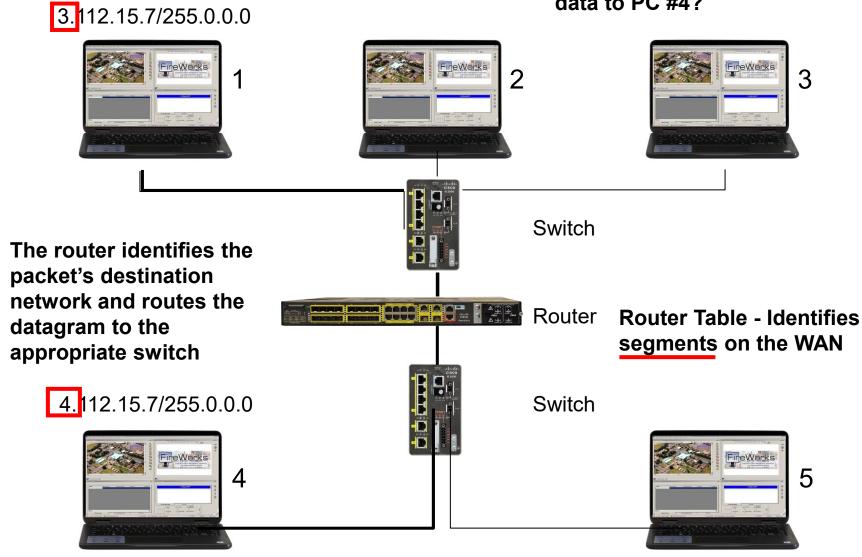
Unmanaged switches


- No configuration needed
- Build a switching table automatically
- Frames are forwarded out ports with no user intervention
- Network runs more efficiently

Managed switches

- With assigned IP address, remotely monitored and administered via web browser
- Collect and report information about network performance
- Set up broadcast domains within network
- Scalable

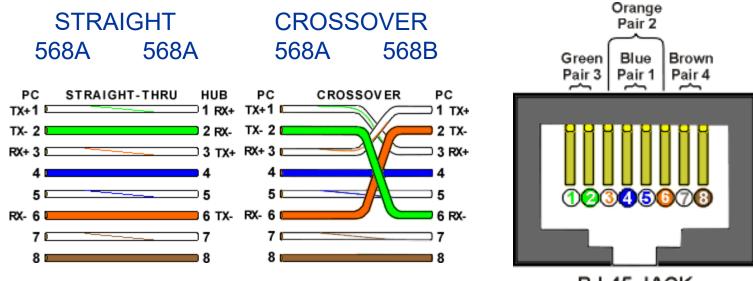
Routers


- Handle traffic flow for data packets that are not addressed inside the local network
- Routes packets to their destinations
- Optimized for handling packets to be transferred between networks
- Attempt to send packets from the source to the destination as fast as possible
- Provides some filtering and basic firewall services

Routers

What if PC #1 needs to send data to PC #4?

MEDIA TYPES


General guidelines

For wired-Ethernet, the maximum distance between nodes, hubs, switches or routers is 100 meters (325 ft.)

Category	Used For
6	Very fast Ethernet
5e	Fast Ethernet (and everything below) up to 1000Mbps
5	Ethernet up to 100Mbps
4	Networks other than Ethernet
3	10Mbps 10BaseT
2	Alarms and telephone voice lines
1	Unknown (not rated for anything specific)

Network cables

RJ-45 JACK EIA/TIA 568A STANDARD

10/100/1000 Physical layer standards

100BASE-FX 100Mbps Multimode fiber 2km

100BASE-FX 100Mbps Single Mode fiber 10km

Anatomy of an SFP

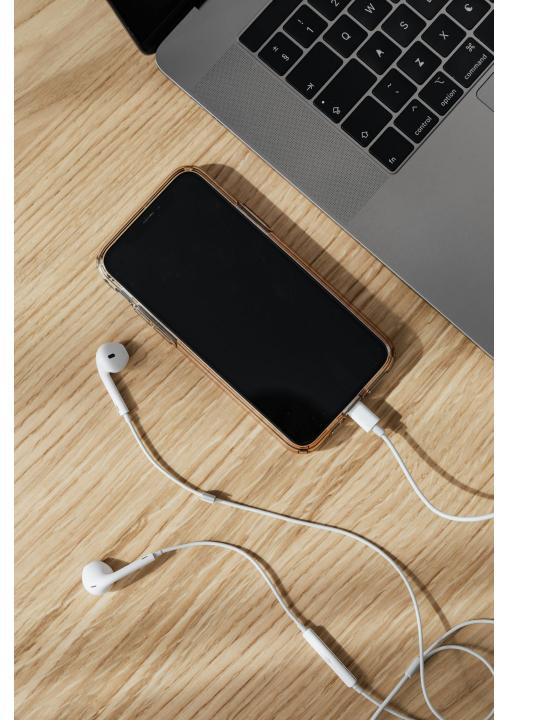
SFP (Small Form-Factor Pluggable) options and power levels:

- Multimode (up to 2 Km)
- Single mode (0-10, 10-70 Km)
- Dual filament
- Hot-swappable

Dual LC connectors

High speed data access lines

- ISDN Integrated Services Digital Network
- Cable Modem
- T1 & T3
- Fractional T1



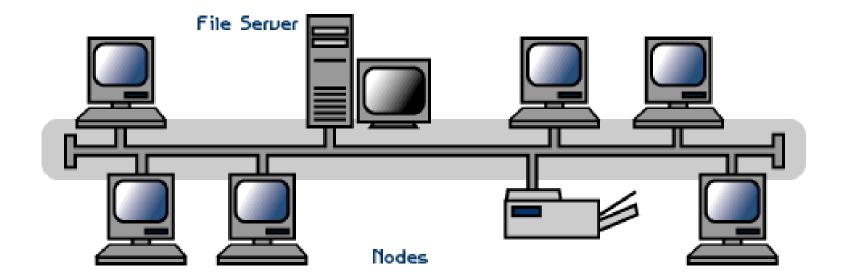
NETWORK TYPES

Types of networking

- Physical networking
 - It's the hardware!
- Logical networking
 - It's the organization of the hardware that results from networking software

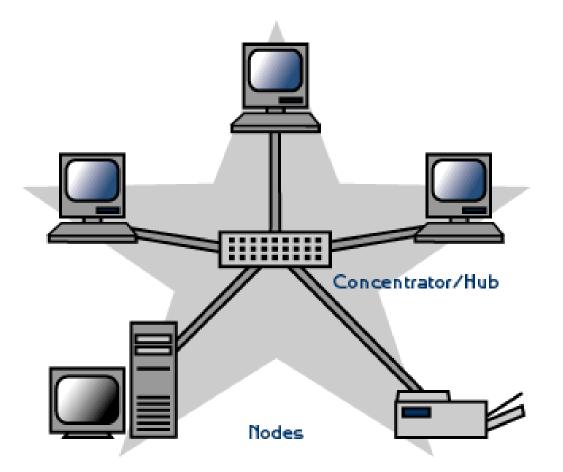
What is a physical topology?

- The arrangement of the wires in a network
- Various forms of physical topologies:
 - Bus
 - Star
 - Ring
 - Tree

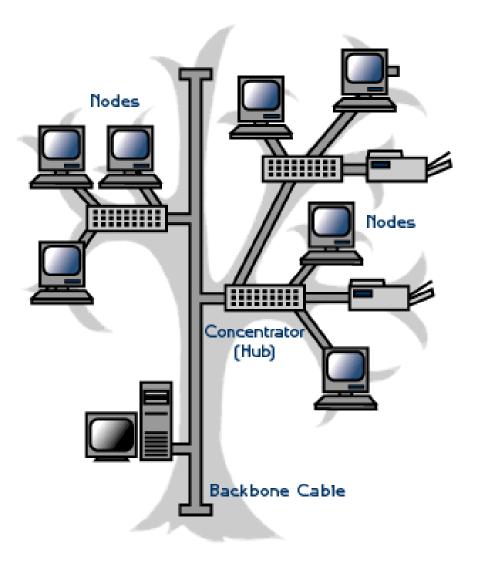


Physical devices

- Nodes computer, printer and server
- Other devices:
 - Hubs
 - Switches
 - Routers
 - Modems



Network topologies - Bus

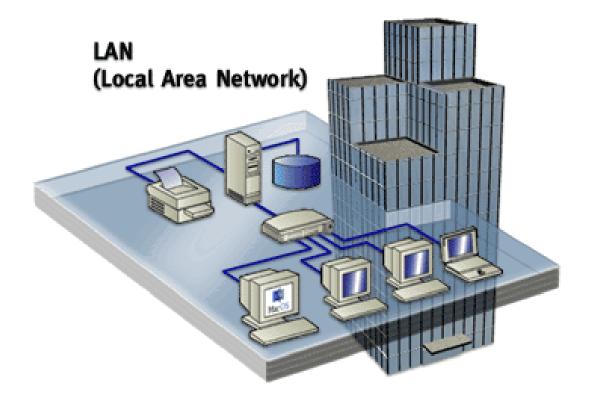


Network topologies - Star

Network topologies - Tree

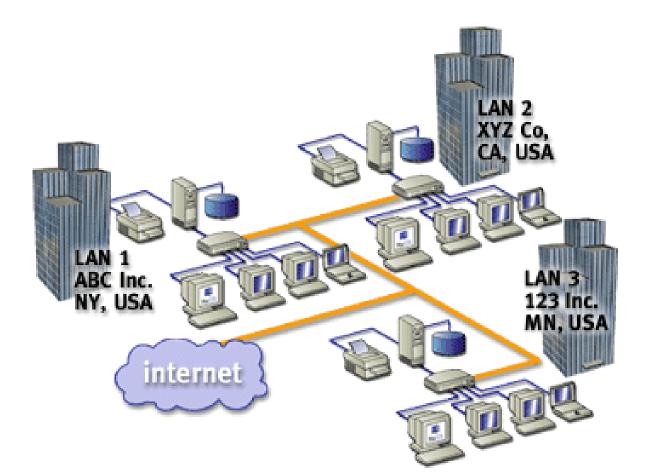
The logical network

- Made up of protocols and services
- Protocols:
 - HTTP
 - FTP
 - SMTP
- Services:
 - File and pint servers
 - Active Directory


Varieties of networks

- LAN Local Area Network
- MAN Metropolitan Area Network
- WAN Wide Area Network
- CAN Campus Area Network

LAN

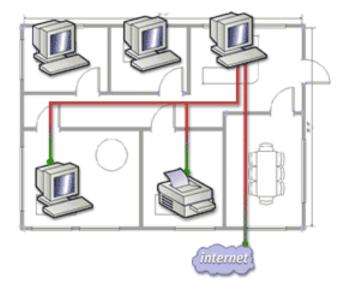

- A network confined to a relatively small area
- Limited to a small geographic area such as:
 - A single room or groups of rooms or offices
 - A single building or small localized group of buildings or a school

Wide Area Networks

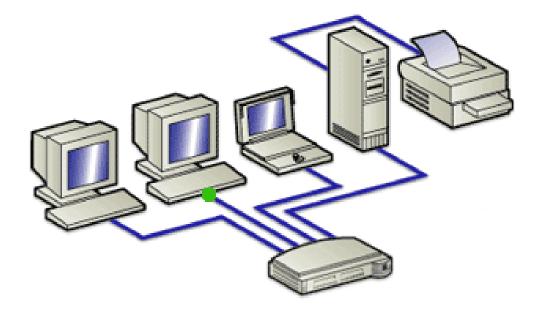
- Networks joining together larger areas (cities, states, countries or events)
- Countries, governments, universities and individuals can be in contact with other areas within seconds

Network operating strategies

- Peer to Peer
- Client / Server



in a peer-to-peer network.


Peer-to-Peer systems

A typical computer network (Available resources are shared by all)

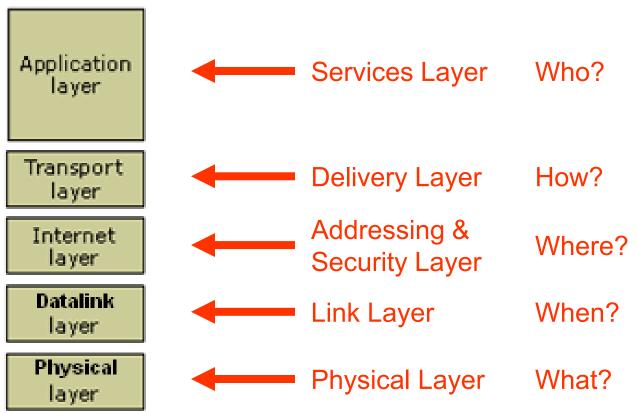
Client / Server systems

A typical computer network (Available resources controlled)

NETWORK PROTOCOLS

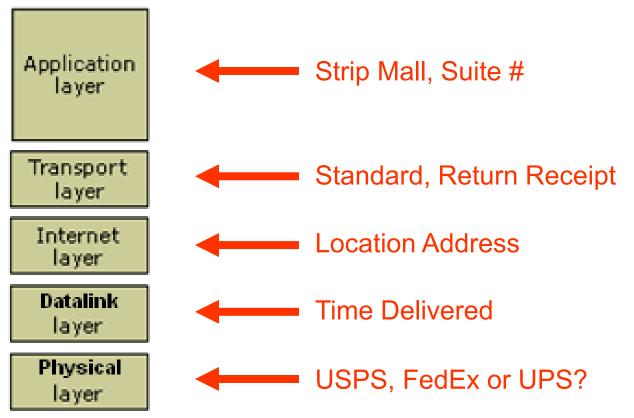
What is a Protocol?

- A set of rules for sending and receiving data across a physical network
- Handles the translation of data from applications (software) to the logical topology
- Sit on top of the logical topology
- Protocols include:
 - FTP
 - HTTP
 - SMTP
 - IP


What is TCP/IP?

- Multifaceted protocol suite on which the Internet runs
- TCP/IP:
 - TCP Transmission Control Protocol is the protocol that ensures reliable delivery of packets to their destinations
 - IP Internet Protocol is the part of the suite responsible for providing addressing and routing services to packets

TCP/IP or Internet model


TCP / IP model

TCP/IP model analogy

TCP / IP model

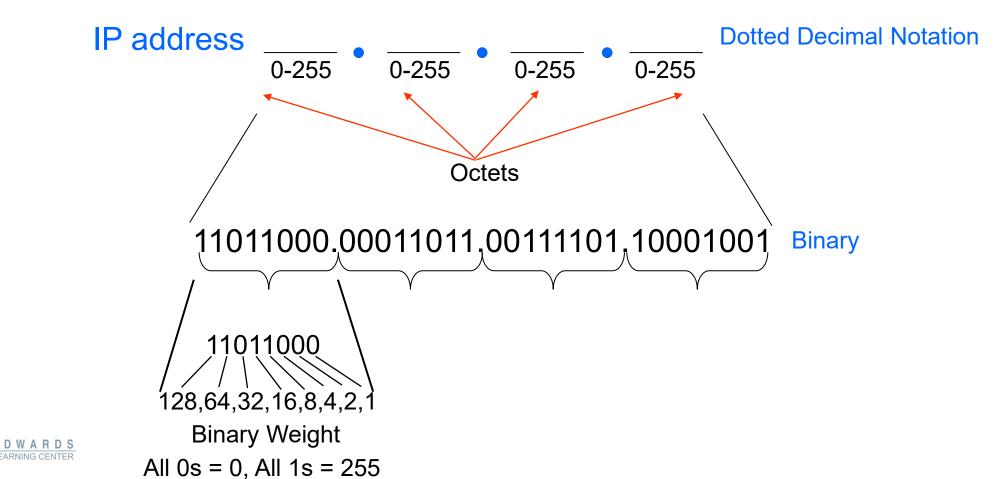
- Links the application layer to the network layer
- Performs packetization and reassembly
 - Breaks up a large message into smaller packets
 - Numbers the packets
 - Reassembles them in order at destination
- Ensures reliable delivery of packets
- Consumes more bandwidth than UDP

- Protocol used for connectionless routing in TCP/IP suite (no acknowledgements, no flow control)
- Uses a small packet header of 8 bytes containing 4 fields:
 - Source port
 - Destination port
 - Message length
 - Header checksum
- Used for control messages that are small, such as DNS, DHCP, RIP and SNMP
- Consumes less bandwidth than TCP

BASIC TCP/IP ADDRESSING

Physical address

- Network Interface Card (NIC) has a unique and permanent physical address
- Every NIC on a local net listens to every transmission
- Media Access Control (MAC)
- Fixed, hard-coded number assigned at the time of manufacturing (unchangeable)
- Serial number (like RF Sensors)
 - Example: 00-08-74-4C-7F-1D


IP Address

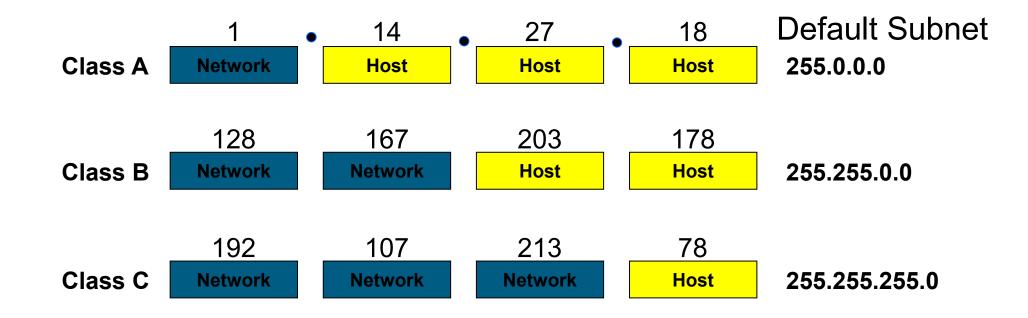
- When connecting multiple devices, each device must have a unique identification called an IP Address
- An IP (Internet Protocol) address is a unique identifier for a node or host connection on an IP network
- An IP address is represented as 4 three-digit groups of decimal values, in the range 0 to 255 (known as octets) separated by decimal points
 - Example: 140.179. 220. 200 in Dotted Decimal
- IP Addresses are referred to as Public or Private
- Public IP is assigned to customer by ISP
- Private IP is assigned by local IT admin or hardware itself
- IP runs over Ethernet and several other hardware interfaces

Network architecture

- IP version 4
- An IP address = 32 bits is made up of a group of numbers (NET ID, HOST ID) whose NET ID identifies a network and HOST ID identifies a machine on the network

Address ranges or classes

Class	Purpose	Address Values	Networks/Class	Subnet Mask	Hosts/Net
A	Few Large Organizations	0.0.0.0 - 126.255.255.255	126	255.0.0.0	16,777,214
В	Medium-size Orgs	128.0.0.0 - 191.255.255.255	16,384	255.255.0.0	65,534
С	Relatively Small Orgs	192.0.0.0 - 223.255.255.255	2,097,152	255.255.255.0	254
D	Multicast Groups	224.0.0.0 - 239.255.255.255	N/A	N/A	N/A
Е	Experimental	240.0.0.0 - 255.255.255.255	N/A	N/A	N/A



Special cases

- 127.0.0.0 127.255.255.255 Loopback address
 - Most software only uses 127.0.0.1 to ping itself and to test NIC and cabling
- 169.254.0.0 169.254.255.255 Auto config address
 - Reserved for Automatic Private IP Addresses and is assigned by the Windows operating system when no valid address can be found for the device
- 255.255.255.255 Broadcast Address
 - Cannot be assigned to a host
- 0.1.1.1 No zeros allowed in the first octet

Address ranges or classes

Static or Dynamic

- Static IPs:
 - Assigned manually
 - Remain the same
- Dynamic IPs:
 - Assigned by network equipment DHCP (Dynamic Host Configuration Protocol) server
 - Can change from time to time
 - Used to assign TCP/IP configuration parameters to nodes on a network
 - Can assign IPs, Subnet Masks, and DNS settings

Static IP Addresses

- If IP address were static, we could connect to device by putting the IP address in the URL field of our browser
- When IP address changes, customers who want to connect for remote viewing do not know the new IP address and are unable to connect

Dynamic IP Addresses

- Dynamic Host Control Protocol (DHCP) assigns IP addresses
- The customer uses DHCP for a period called a lease
- When lease expires, ISP will provide a new and different IP address

DNS – Domain Name Service

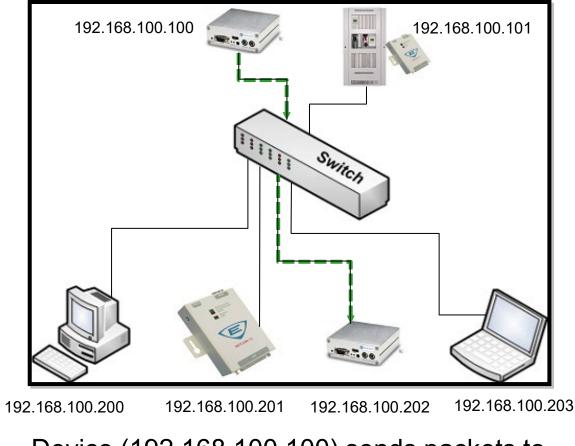
- The Domain Name Service (DNS) provides a lookup service to correlate the Domain Names to the public IP addresses
- DNS servers keep track of known Domain Names
- DNS resolvers issue host name and address conversion requests
- If DNS server cannot resolve the request, it asks a higher-level server up to the Top-Level Domains (TLDs)
- Similar to WINS and NIS
- DNS supports overall name resolution and mapping

Dynamic DNS

- DNS servers that learn a node's new IP and match it with a host or domain name
- Requires Dynamic DNS compatible router, NIC, or DHCP server that broadcasts the node's IP address to the DNS server

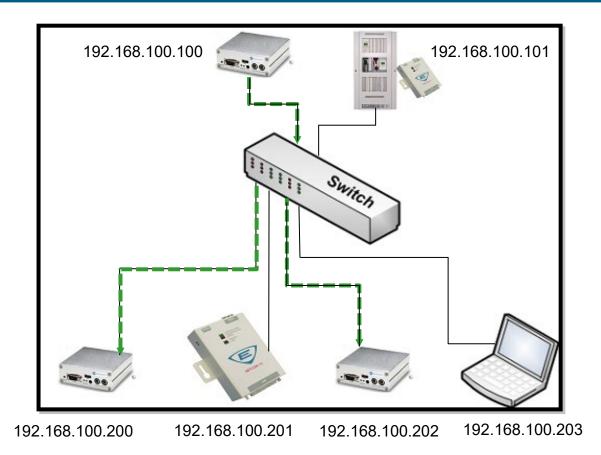
DNS to the rescue

A Dynamic DNS provider allows us to create a domain name (e.g., Fredsdeviceatmysite. com) and match it to whatever IP address the ISP server has assigned to the account where the device resides

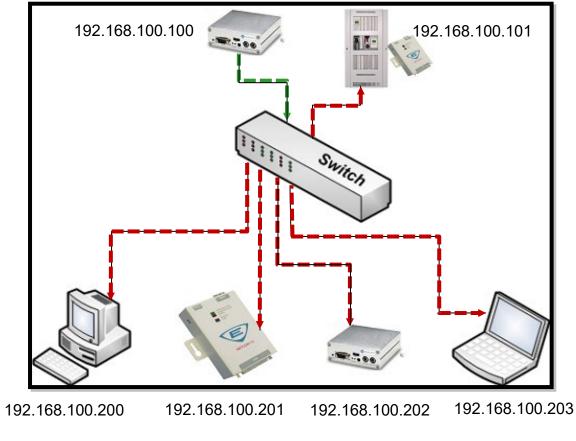


IGMP - Internet Group Management Protocol

- Standard IP protocol supported by most LAN/WAN vendors in traditional LAN products, ATM, and gigabit Ethernet solutions
- Used to establish host memberships in particular multicast groups on a single network
- Allow a host to inform its local router, using Host Membership Reports, that it wants to receive messages addressed to a specific multicast group


Unicast: point-to-point

Device (192.168.100.100) sends packets to destination (192.168.100.202)


Multicast: point-to-multi-point

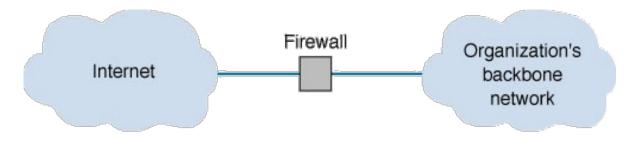
Device (192.168.100.100) sends packets to multi-destinations (224.16.32.10)

Broadcast: point-to-all

Device (192.168.100.100) sends packets to all destinations (255.255.255.255)

INTERNET SECURITY

Firewalls


- Firewalls prevent unwanted packets into the network
- Some PC security services disable UDP streaming
- Managed switches and routers can close unwanted ports
- Every Edwards network component utilizes different UDP and TCP ports ensure the IT department has ports open before you install

Firewalls

- Prevent intruders (by securing Internet connections)
 - From making unauthorized access and denial of service attacks to your network
- Could be a router, gateway, or special purpose computer
 - Examines packets flowing into and out of the organization's network
 - Restricts access to that network
 - Placed on every connection that network has to Internet
- Main types of firewalls:
 - Packet level firewalls (packet filters)
 - Application-level firewalls (application gateway)

Packet filters

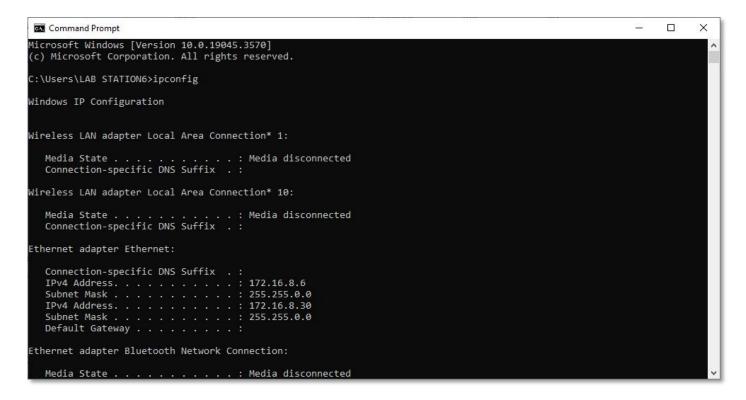
- Examine the source and destination address of packets passing through
 - Allow only packets that have acceptable addresses to pass
 - Examine IP addresses and TCP ports
 - Firewall is unaware of applications and what the intruder is trying to do
- IP spoofing remains a problem
 - Done by changing the source address of incoming packets from their real address to an address inside the organization's network
 - Firewall will pass this packet

Ports

- Support connection to applications
- System of logical channels called ports
- Identified by a port number
- Logical pipelines that allow data to flow from the application to (and from) the protocol software
- Ports can be vulnerability of node

Port forwarding

- Function of a router allowing connections from the WAN side on a specific port to be forwarded to a specified LAN address
- Allows LAN Node with a private IP to receive incoming unsolicited connections
- Necessary for connection to networking equipment to not require public IP
- Be cautious of other services using same port number, e.g., Http (port 80)



BASIC TROUBLESHOOTING TOOLS

ipconfig

- Displays the status and details of your Ethernet adaptor and node
- To obtain a list of extended ipconfig commands at the command prompt type [ipconfig ?]

ARP -A

Administrator: Command	Prompt			×
	rsion 10.0.19045.3570] tion. All rights reserv	/ed.		î
C:\Windows\system32>a	rp -a			
<pre>Interface: 172.16.8.6 Internet Address 172.16.255.255 224.0.0.22 239.255.255.250 255.255.255.255 C:\Windows\system32></pre>		Type static static static static		
				~

Pinging (Packet InterNet Groper)

Some of the extended ping command set include:

- ping 172.16.10.6 will ping an IP address
- ping domainname will ping a domain by name
 - Example "ping google.com"
- To obtain a list of the ping commands, type [ping/?]

Ping 4-FWALx

Administrator: Command Prompt X ____ Microsoft Windows [Version 10.0.19045.3570] (c) Microsoft Corporation. All rights reserved. C:\Windows\system32>arp -a Interface: 172.16.8.6 --- 0x13 Internet Address Physical Address Type 172.16.255.255 ff-ff-ff-ff-ff static 224.0.0.22 01-00-5e-00-00-16 static 239.255.255.250 01-00-5e-7f-ff-fa static 255.255.255.255 ff-ff-ff-ff-ff-ff static C:\Windows\system32>ping 172.16.10.6 Pinging 172.16.10.6 with 32 bytes of data: Request timed out. Request timed out. Request timed out. Request timed out. Ping statistics for 172.16.10.6: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss), C:\Windows\system32>

ARP -A

Administrator: Command	l Prompt		22	×
172.16.255.255	ff-ff-ff-ff-ff-ff	static		~
224.0.0.22	01-00-5e-00-00-16	static		
239.255.255.250	01-00-5e-7f-ff-fa	static		
255.255.255.255	ff-ff-ff-ff-ff	static		
C:\Windows\system32>	ping 172.16.10.6			
	with 32 bytes of data:			
Request timed out.				
Request timed out.				
Request timed out.				
Request timed out.				
Ping statistics for :	172.16.10.6:			
Packets: Sent = 4	4, Received = 0, Lost =	4 (100% loss),		
C:\Windows\system32>	arp -a			
Interface: 172.16.8.0	5 0x13			
Internet Address	Physical Address	Туре		
172.16.3.6	00-80-a3-cd-00-04	dynamic		
172.16.10.6	00-b0-19-74-0c-40	dynamic		
172.16.100.136	00-20-4a-f7-f2-11	dynamic		
172.16.100.146	00-40-48-6e-e3-c4	dynamic		
172.16.255.255	ff-ff-ff-ff-ff-ff	static		
224.0.0.22	01-00-5e-00-00-16	static		
239.255.255.250	01-00-5e-7f-ff-fa	static		
255.255.255.255	ff-ff-ff-ff-ff-ff	static		
C:\Windows\system32>				~

Tracert.www.yahoo.com

tracert *hostname or address* traces the route that a packet takes from the current workstation

MS-DOS Prompt					
Microsoft Windows 2000 [Version 5.00.2195]					
C:\>tracert www.yahoo.com					
Tracing route to www.yahoo.akadns.net [64.58.76.176] over a maximum of 30 hops:					
1 <10 ms 10 ms <10 ms 10.196.1.1 2 <10 ms <10 ms <10 ms 10.192.10.251					
3 <10 ms 10 ms <10 ms ir.yca.com [216.130.131.25]					
4 <10 ms <10 ms 10 ms cisco7010-p0.newnanutilities.org [216.130.128.2]					
5 <10 ms 10 ms <10 ms cisco7507-p1.newnanutilities.org [216.130.128.1]					
6 <10 ms 10 ms <10 ms 63.251.78.9					
7 <10 ms 10 ms 10 ms 63.251.78.6 8 <10 ms 10 ms 10 ms 500.Serial3-9.GW4.ATL3.ALTER.NET [157.130.82.225]					
8 <10 ms 10 ms 10 ms 500.Serial3-9.GW4.ATL3.ALTER.NET [157.130.82.225]					
9 10 ms 10 ms 10 ms 147.at-2-1-0.XR1.ATL1.ALTER.NET [152.63.81.58]					
10 <10 ms 20 ms 10 ms 195.at-2-0-0.XR1.ATL5.ALTER.NET [152.63.80.186]					
11 <10 ms 10 ms <10 ms 193.ATM7-0.GW1.ATL5.ALTER.NET [152.63.80.133]					
12 10 ms 10 ms 10 ms exodus-oc3-atl.customer.alter.net [157.130.76.78					
13 20 ms 30 ms 30 ms bbr02-g2-0.atln01.exodus.net [216.35.162.4]					
14 20 ms 30 ms 30 ms bbr01-p6-0.hrnd01.exodus.net [206.79.9.50]					
15 20 ms 30 ms 30 ms bbr02-p6-0.stng01.exodus.net [209.185.249.137] 16 20 ms 20 ms 30 ms dcr04-g10-0.stng01.exodus.net [216.33.96.162]					
16 20 ms 20 ms 30 ms dcr04-g10-0.stng01.exodus.net [216.33.96.162] 17 20 ms 30 ms 30 ms 216.33.98.19					
18 20 ms 30 ms 30 ms 216.35.210.126					
19 20 ms 30 ms 30 ms www7.dcx.yahoo.com [64.58.76.176]					
Trace complete.					

EDWARDS LEARNING CENTER

